A COMPLEMENT TO THE PAPER "A POSITIVE ANSWER TO THE BASIS PROBLEM"

BY

PAOLO TERENZI

Dipartimento di Matematica del Politecnico Piazza Leonardo da Vinci 32, 20133 Milano, Italy e-mail: paoter@mate.polimi.it

ABSTRACT

This complement includes stronger versions of the theorems of the paper "A positive answer to the basis problem", practically with the same proofs.

The existence of a uniformly minimal basis with fixed brackets and quasi-fixed permutations

This section is a continuation of the Introduction of [T]. We say that a sequence $\{x_n\}$, with $\{x_n, x_n^*\}$ biorthogonal, is a

(D₈) Uniformly minimal basis with fixed brackets and quasi-fixed permutations of a Banach space X, if $\{x_n\}$ and $\{x_n^*\}$ are both bounded, moreover there exist two fixed increasing sequences $\{p(m)\}$ and $\{q(m)\}$ of positive integers, with q(m) < p(m) < q(m+1) for each m, such that, setting p(0) = q(0) = 0, every element x_0 of X has the following representation:

$$x_0 = \sum_{m=0}^{\infty} \sum_{n=q(m)+1}^{q(m+1)} x_{\pi(n)}^* (x_0) x_{\pi(n)},$$

where, for each m, $\{\pi(n)\}_{n=p(m)+1}^{p(m+1)}$ is a permutation of $\{n\}_{n=p(m)+1}^{p(m+1)}$ which depends on x_0 .

The following theorem improves Theorem I of the Introduction.

Received January 27, 1998

THEOREM 1: Every separable Banach space has a uniformly minimal basis with fixed brackets and quasi-fixed permutations.

An analogous improvement holds for Theorem II of the Introduction: this improvement follows from Theorem 1 by means of the same procedure as in $\S 4$ and $\S 5$.

Comment 6: It is impossible to improve Theorem 1 by omitting in (D_8) the finite block permutations, since the basis with fixed brackets does not exist in general. We also point out that the properties of (D_8) are hereditary for subsequences.

Proof of Theorem 1: The following minor modifications of the proof of [T] are needed: Follow the original proof in Section 3 of [T] up to (3.2). In the first, fifth and sixth lines of (3.2) replace q_{m+1} by q(m) and, in the first, second and third lines of (3.2), replace t_{m+1} by t'(m). On page 88, line 9, we replace $q_{m+1} = r_{t(m,i)}$ by $q(m) = r_{t(m,i)}$ for $i = r_{t(m)+1} - r_{t(m)}$. Note that the first part of (3.2) is satisfied. At this point we can choose by (2.17) a positive integer t(m+1) such that, setting $q_{m+1} = r_{t(m+1)}$ (we use the subsequences of (2.17)),

$$(3.10)' \qquad \{\{u_{b(m),j,n}\}_{n=1}^{2^{b(m)}}\}_{j=1}^{R_{b(m)}} \subset \{x_n\}_{n=q(m)+1}^{q_{m+1}} \quad \text{with } b(m) > q(m).$$

Now we set $y_n = x_n$ and $y_n^* = x_n^*$ for $q(m) + 1 \le n \le q_{m+1}$. Then we continue the proof of Theorem I, starting from line 11 on page 88.

We follow the proof of [T] up to the first line of page 93. Then we replace the paragraph starting with "Concluding case (A)" and ending with condition (3.18) by the following paragraph:

"By (2.17) and (3.10), there exists another index j'(m') with $1 \leq j'(m') \leq R_{b(m')}$ such that

$$(3.10)'' \qquad \sum_{n=1}^{2^{b(m')}} |u_{b(m'),j'(m'),n}^*(x_0)| < \frac{1}{2^{b(m')}}.$$

Therefore, setting $0(m') = q(m') - \{r_{t(m')} + i(m') - 1 + r_{t(m'),i(m')-1} - r_{t(m')+1} + 2^{f(m',i(m'),s(m'),k(m'))}\}$, we can add a fourth term in (3.15), between the brackets, getting

$$(3.15)' \quad \left\| x_0 - \left\{ \dots + \sum_{n=1}^{0(m')} u_{b(m'),j'(m'),n}^*(x_0) u_{b(m'),j'(m'),n} \right\} \right\| < \frac{1}{2^m} + \frac{1}{2^{b(m')}}.$$

Concluding case (A), we call again $\{m(k)\}$ our subsequence. Then the preceding procedure gives the existence, for each k, of a permutation

(3.18)
$$\{\pi(n)\}_{n=q_{m(k)}+1}^{q_{m(k)+1}} \text{ of } \{n\}_{n=q_{m(k)}+1}^{q_{m(k)+1}} \text{ with a positive number } \varepsilon'_{m(k)} \to 0$$

with k such that

$$\left\|x_0 - \left\{\sum_{n=1}^{q_{m(k)}} y_n^*(x_0)y_n + \sum_{n=q_{m(k)}+1}^{q(m_k)} y_{\pi(n)}^*(x_0)y_{\pi(n)}\right\}\right\| < \varepsilon'_{m(k)}.$$

Then we continue the proof of Theorem I, starting with line 7 of page 93 up to and including (3.19). Following (3.19) we continue with the following part, which concludes the proof of Theorem 1:

"On the other hand, again by (2.17) and (3.10)', there exists j'(m'(k)) with $1 \leq j'(m'(k)) \leq R_{b(m'(k))}$, such that we have (3.10)" again, with m' replaced by m'(k). Therefore, if $\{\pi(n)\}_{n=q_{m'(k)}+1}^{q_{m'(k)}+1}$ is any permutation of $\{n\}_{n=q_{m'(k)}+1}^{q_{m'(k)}+1}$ such that $\{y_{\pi(n)}\}_{n=q_{m'(k)}+1}^{q(m'(k))} = \{u_{b(m'(k)),j'(m'(k)),n}\}_{n=1}^{q(m'(k))-q_{m'(k)}}$, it again follows that

$$\left\|x_0 - \left\{\sum_{n=1}^{q_{m'(k)}} y_n^*(x_0)y_n + \sum_{n=q_{m'(k)}+1}^{q(m'(k))} y_{\pi(n)}^*(x_0)y_{\pi(n)}\right\}\right\| < \varepsilon'_{m'(k)} + \frac{1}{2^{b(m'(k))}}.$$

Setting $p(m) = q_m$ for each m, this completes the proof of Theorem 1.

Reference

[T] P. Terenzi, A positive answer to the basis problem, Israel Journal of Mathematics 104 (1998), 51–124

CORRECTIONS TO THE PAPER "A POSITIVE ANSWER TO THE BASIS PROBLEM"

- 1. Page 56 bottom line: replace s(m) by $r_{s(m)}$.
- 2. Page 62 line 8: replace " $\{g_n\}$ basic" by " $\{g_n\}$ of X^* such that $\{y_n, f_n\}$ and $\{y_n, g_n\}$ are biorthogonal, with $\{f_n\}$ bounded and $\{g_n\}$ basic".
- 3. Page 64 lines 20 and 22: replace " $(b) \Leftrightarrow (c)$ " and " $(d) \Leftrightarrow (e)$ " by " $(b) \Rightarrow (c)$ " and " $(d) \Leftarrow (e)$ " respectively.
- 4. Page 65 line 2: replace " $(b) \Rightarrow (d)$ " by " $(b) \Leftrightarrow (d)$ ".
- 5. Page 66 line 16: replace "e'-" by " ε' -".
- 6. Page 67 line 19: replace "M" by "m".
- 7. Page 68 line 3: replace "T" by " \perp ".
- 8. Page 72 line 8: replace "q(1,q)" by "g(1,q)".
- 9. Page 73 line 24: replace " $|a_{n'_k}l$ " by " $|a_{n'_k}|$ ".
- 10. Page 76 line 16: replace " $2(1+\varepsilon')=2\varepsilon'$ " by " $2(1+\varepsilon')+2\varepsilon'$ ".